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ABSTRACT It is proved that a Banach space contains
a subspace isomorphic to I! if (and only if) it has a bounded
sequence with no weak-Cauchy subsequence. The proof
yields that a sequence of subsets of a given set has a sub-
sequence that is either convergent or Boolean independent.

A bounded sequence of elements (f,) in a Banach space B is
said to be equivalent to the usual I'-basis provided there is a
& > 0 so that for all n and choices of scalars c;, . .

n
1) lecil < l[zefdl.
e

+ sCny
(1]

Of course if (f,) has this property, then the closed linear span
of the f,’s is isomorphic (linearly homeomorphic) to 1. (f,) is
said to be a weak-Cauchy sequence if lim b*(f,) exists for all

n—r oo
b* € B*, the dual of B.

THE MAIN THEOREM. Let (f,) be a bounded sequence in a real
Banach space B. Then (f,) has a subsequence (f',) satisfying
one of the following two mutually exclusive alternatives:

@) (f',) 18 a weak-Cauchy sequence.

(%) (f'n) 18 equivalent to the usual I'-basts.

We note two immediate consequences:

1. If B s weakly complete (that 18, every weak-Cauchy sequence in
B converges weakly to an element of B), then B is either reflexive
or contains a subspace 1somorphic to I1.

I1. If B has the Schur property (that is, every weakly convergent
sequence tn B converges in norm), then every infinite-dvmensional
subspace of B contains a subspace isomorphic to It

It is a well-known consequence of the Vitali-Hahn—Saks
theorem that L(u) is weakly complete for any measure u on
a measurable space, while /! has the Schur property.

We reformulate the Main Theorem as follows:

THEOREM 1. Let S be a set and (f,) a uniformly bounded
sequence of 1eal-valued functions defined on S. Then (f,) has a
subsequence (f',,) satisfying one of the following alternatives:

@) (f'n) converges point-wise on S.
#) (f'y) ts equivalent in the supremum norm to the usual
-basts.

The exclusivity of the alternatives of the Main Theorem
follows from the obvious fact that the usual I*-basis is not a
weak-Cauchy sequence. If (b,) is a bounded sequence in a
Banach space B, we let S denote the unit ball of B* and then
define f,(s) = 8(b,) for all s € S and n, to deduce the Main
Theorem from Theorem 1.

We begin the proof of Theorem 1 with that of the crucial
special case of characteristic functions; that is, a sequence
(4,) of subsets of S with f, = x4, for all n (where x4,(s) = 1
if s &€ Ay x4.(8) = 0if s &€ A,). (In classical terminology,
(4,) is said to converge if x4, converges point-wise.) Our
proof of this special case yields that if (4,) has no convergent
subsequence, then (A,) has a Boolean independent subsequence
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(4,"); that is, for every pair of nonempty finite disjoint
subsets G and B of indices, N A/, N1 N ~ A’, # ¢. It is
nc@ n€B

easily seen that a Boolean independent sequence (4,) of
subsets of S has the property that (x.,) is equivalent to the
usual basis of /! (see Proposttion 4).

Because of the technical difficulties encountered in deducing
Theorem 1 from the above special case, we need a generaliza-
tion of the notion of a convergent sequence of sets. It is also
convenient to introduce the following terminology:

By a sequence we shall mean a set of objects indexed by
some infinite subset M of the positive integers N; we use the
notation (f,).car- We shall understand by “a subset of M”’ an
wnfinite subset of M, unless the contrary is explicitly stated.
Given L and M subsets of N, we say that L is almost contained
in Mif L N ~ M is a finite set. Given a sequence (fy)ncar
and subsets L and @ of M with L almost contained in @, we
call (f;)ncr, & subsequence of (f,)ncq. In the case in which
(fn)near is & sequence of real-valued functions defined on a
set S, letting {mi, m,, . . .} be a strictly increasing enumeration
of M and s € S, we let

lim f,(s) = lim fm,(8) and Lim f,(s) = Lim fn,(s).

M jo® M jo®

(The point of our terminology, of course, is to avoid explicitly
enumerating such sets M whenever it is feasible.)

Definition: Let S be a set, (A,, B,)ncar be a sequence of pairs
of subsets of Swith A, N B, = ¢ for all n, and X a subset of S.
We say that (A,, B,)nca converges on the set X if every point
z € X either belongs to at most finitely many A,’s, or to at
most finitely many B,’s, i.e., either im x4,(z) = 0or lim x5, (z)

n—ro n—o
= 0. (When X = 8, the qualifier “‘on the set X”’ may be omitted.)
We say that (A, Bp)ncur t8 tndependent if for every pair of
disjovnt finite nonempty subsets G and B of M,

NA4,n

neq@

N B, # ¢. [2]
nEB

We note that in the special case where B, = S ~ A4, for
allnand X = 8, (4,, B,)acar converges on X if and only if
(An)necar converges. We also note that if (A, Bp)nenm
converges on X and (A,, Ba)axcs is a subsequence of (4,,
B,) ncur, then (A,, B,)acr converges on X; if (A,, Bp)nen
converges on each of the sets X1, X5, ..., then (4,, By)rcn

converges on 'U1X ¢« Finally, it is an artifact of our definition
i
that every such sequence (A,, B,).cu converges on the
empty set. The special case of Theorem 1 mentioned above, is
an immediate consequence of the next result.

THEOREM 2. Let (A,, B,).cy be a sequence of pairs of
subsets of a set S with A, N B, = ¢ for all n, and suppose that
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(A, Bp)nen has no convergent subsequence. Then there is an
infinite subset M of N so that (A, B,)nem 18 tndependent.

Theorem 2, in turn, follows very simply from the next
crucial result.

LEMMA 3. Let I > 1, (A,, By)acn o Sequence of pairs of
subsets of a set S with A, N B, = ¢ for all n, X1,..., Xu
disjoint subsets of S, and suppose that for each 1,1 < 1 < [,
(A4, B,)nen has no subsequence convergent on X ;. Then there
exists a j and an infinite subset M of N so that for each 1, 1 <
1 < 1, (A, By)ncu has no subsequence convergent on X; N A,
and also no subsequence convergent on X, N Bj;.

We introduce the following notation: Let n & N and ¢ =
+1; define ed, = A,if e = +1and eAd, = B,if e = —1.

We may deduce Theorem 2 from Lemma 3 by the following
inductive process: Applying Lemma 3 for the case I = 1,
choose n; and M, a subset of N so that (A,, B,)ncar, has no
subsequence convergent on either A,, or B,,. Suppose n, <
ne < -+ < my and M » have been chosen, so that on each of

the 2% disjoint sets ﬂ e, nis (Any By)near, has no convergent
J =

subsequence, where ¢ = (e, . . . ,¢x) ranges over all 2* choices

of signs ¢; = =1 all . Now applying Lemma 3 for the case

1 = 2% choose ngy1 € My, ngy1 > ng, and My, a subset of

M, so that for each ¢ = (el, v s€x)y (Any, Brp)neasi., has no

subsequence convergent on n € An; N Ap,,, and also no
j=1

subsequence convergent on ﬂ €; Ay, N B,,.,. This completes
i=1

the definition of the n,’s and M s by induction; it now follows
immediately that M = {m, ns, ...} satisfies the conclusion
of Theorem 2. We note, incidentally, that the sequence (4,,
B,)ncar has the property that it has no subsequence con-
vergent on any nonempty member of the Boolean ring gen-
erated by {4,, B,:nE M}.

We pass now to the proof of Lemma 3. The case | =
critical, and its proof is constructive in a certain sense. We
shall exhibit an algorithm to produce the desired j and M;
this algorithm is then used to prove Lemma 3 by induction.
We now suppose (4,, B,)qcn as in the Definition and let X
be as ubset of S so that (4, B,),cy has no subsequence
convergent on X. We shall say that j and M work if (A,
B,)ncu has no subsequence convergent on either X N A, or
X N B,. It is obvious that we can assume without loss of
generality that S = X; we do so.

THE BASIC ALGORITHM. Let n; be an arbitrary element of N.
If n, and N do not work, let N; be an arbitrary subset of N
with the property that (4 ,, B,)ecn, converges on A, or B,
Suppose & > 1 and the subset N, of N and the element
ng—1 of N have been defined. Let n; be an arbitrary member of

" Ny with ng > ng_y. If n, and Ny, do not work, let N be
an arbitrary subset of Nj_: with the property that (4,
B.) nen, converges on A, or on B,,. We now assert that this
process can be continued only a finite number of times. That s,
as long as the n;’s and N ;s are selected in the above manner, there
must exist a k > 1 so that ny works for Ny—, (where No = N).

Proof of this assertion: If not, we obtain ng, Ny, and e, =
=+1, defined for all £ € N, with the properties that n, >
nk—1, Nx © N1, N is a subset of Ny, and (A,, Bp)new
converges on ¢,, 4, (where we put no = 0).

Now let M = {m, ns, ...}. Then for every k, (A, Bx)ncu
is a subsequence of (4,, By)ncn:, hence (4,, By).cu con-

_is a subsequence of (4,, By)ncxr a0d U €n, Ay, D U €, A
k=1 nEM’
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verges on |J ey, A,. Now we may choose an infinite subset
k=1

M’ of M so that e, = 1forallm & M’, or ¢, = —1 for all
m &€ M'. Suppose the first possibility. Since (A4,, B,)aca

n
= U A4,, (A, Bp)ncu’ converges on |J A,. Since (4,,
nEM’ nEM’

B,) ncu’ does not converge, there must exist an z so that

hEM: zE A,} is infinite and also [nE M:zE B,,}

is infinite. But then z € Lj', An, and hence (4,, B,)necn
nEM’

does not converge on | e, 4,, a contradiction. The proof
neM’

for the case of the second possibility is the same.

The proof of the assertion of the Basic Algorithmn, and hence
of the case I = 1 of Lemma 3, is now complete. Suppose
Lemma 3 proved for | = r, and let the X /s and (4, B,)nen
satisfy its hypotheses for the case I = r + 1. Again, we shall
say that j and M work if (4,, B,) ncar has no subsequence con-
vergent on either X,4; N 4, or X, N B,. We shall also say
that j and M r-work if for every 1 <t < rande= £ 1, (4,,
B.,) near has no subsequence convergent on X ;M ¢ A4 ,. By the in-
duction hypothesis, we may choose n; and N’; a subset of N so
that n, and N’, r-work. If n, and N’; do not work, choose N, a
subset of N’; so that (4,, B,)acn, converges on 4, N X,
or on B, N X,,. Suppose k > 1, and the subset Ny, of
N and the element n;—; of N have been defined. Since (4,,
B,)xeni- 18 & subsequence of (A4,, B,)a.cy, We may apply
the induction hypothesis to choose an n, & N;_; with n; >
ng—1 and a subset N’y of Ny, so that n; and (4,, Bp)nen
r-work. Again, if n; and (4,, B,)ncn’, do not work, choose
Ny a subset of N'; so that (4,, B,).cw, converges on 4,, N
X,oron B, N X,,.. Now this process cannot be continued
indefinitely, since the ny’s and N,’s thus constructed satisfy
the criteria of the Basic Algorithm and (A,, B,)acy has no
subsequence convergent on X,;,. Thus, there must exist a
k > 1 so that n, and N’y work. By construction n; and N’y
r-work, hence by definition, n, and N’; satisfy the conclusion
of Lemma 3.

This completes the proof of Lemma 3 and hence of Theorem
2. To apply Theorem 2 to the proof of our Main Theorem, we
need the following simple sufficient condition for a sequence
of functions to be equivalent to the usual I*-basis.

Proposition 4: Let (fu)ncar be a uniformly bounded sequence
of real-valued functions defined on a set S and & and r real
numbers with 5 > 0. Assume, putting A, = {z: fu(x) > & + r}
and B, = {z: f,(x) < r} for all n € M, that (A, Ba)ncic i8
independent. Then (fp)ncar 18 equivalent, in the supremum
norm, to the usual l'-basts.

Proof: We shall prove that the “5”” of Eq. [1] may be chosen
to be /2. By multiplying all the f,’s by —1 if necessary, we
may assume that & + r > 0. Let (cq)«ar be a sequence of
scalars with only finitely many c,’s non-zero and Z|c{ = 1.
It suffices to show that there is an s in S with

[Zeifo(s)| > 8/2. [3]
Let G = {i € M:c; >0} and B = {i € M:¢,<0}.

Since Eq. [2] holds, we may choose z and y such that z &

NA,NNB;andy E ﬂ AN ﬂ B,. If we suppose first
i€ i€B
thatr > 0 and set B’ = {z € B: f,(z) > 0}, then

2 cfi@) > Z cifil@) > —r Z led > Z led(—7). [4]
i€B B’ i€B’ €B
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Similarly, .
- 2 i) = X led(=n). 51
€@ €@
By Egs. [4], [S], and the definitions of z and y, we thus have
Sedfi@) = 2 led @ + 1) + 2 led(—n) [6]
€q {€B
and

—Zeifuy) = 2 led @ + 1) + 2 led(=1). (7]
1€EB -1€@

It is easily seen that Eqgs. [6] and [7] also hold if r < 0. Since
the sum of the right-hand sides of Egs. [6] and [7] equals 4,
the maximum of the left-hand sides must be at least as large
as /2. Here we tacitly assumed G # ¢ and B # ¢; however,
the argument is still valid if we simply replace an intersection
over the empty set of indices by S, and a sum over the empty
set of indices by 0. Thus, Eq. [3] is estabhshed for s = z or
8 = y, so Proposition 4 is proved.

We now assume that S and (f,)ncar Satisfy the hypotheses of
Theorem 1 and fail the first alternative; t.e. (fu)ncy has no
subsequence potnt-wise convergent on S. To complete the proof of
Theorem 1, it suffices to construct & > 0, a real number r,
and a subset M of N so that the hypotheses of the preceding
proposition are satisfied. The next two lemmas allow us to find
6 and r; their demonstrations involve standard arguments.

LEMMA 5. For each subset M of N, let
(M) = sup (lim fn(z) — im fm(3)).
S M M

Then there exists a subset Q of N so that for all subsets L or Q,
8(L) = Q). .

Remark: Our standing assumptions imply that §(M) > 0
for all subsets M of N.

Proof of Lemma 6: For any subsets L and M of N with L
almost contained in M, we have that §(L) < §(M). Were the
conclusion of Lemma 6 false, we could choose by transfinite
induction, a transfinite family {N,: a < w:} of subsets of N,
indexed by the set of ordinals « less than the first uncountable
ordinal w1, with the property that for all @ < 8 < wi, Ny is
almost contained in N, and §(N g) < (N ). This is impossible,
for as is well known, there does not exist a transfinite strictly
decreasing sequence of (positive) real numbers. (To reach a
contradiction, simply put é = inf {$(Na): @ <}, then choose
(an)nen & sequence of ordinals with § = lim 8(N,,); for
B> stllvp a,, we have 6(Ng) < 9). -

Now choose @ a subset of N, satisfying the conclusion of
Lemma 6, and put § = 5(Q)/2; by the above remark, 5 > 0.

LEMMA 6. There exists a subset M’ of Q and a rational number
7 80 that for every subset L of M’, there is an x € S satisfying

@f&x) >3+ rand lim fi(@) <.

Theorem 1 and, hence, our main result follow immediately
from Theorem 2, Proposition 4, and Lemma 6. Indeed, let M’
satisfy the conclusion of Lemma 6, and for each n & M/,
let A, = {2 € S: fo(z) > 6 + 7} and B, = {2 € S: f,(z)

7}. The conclusion of Lemma 6 yields that (A,, Ba)car
has no convergent subsequence. By Theorem 2, we may select
a subset M of M’ so that (4,, B,)ncar is independent. Then
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(fn)ncar satisfies the hypotheses of Proposition 4, hence is
equivalent in the supremum norm, to the usual {l-basis.

Proof of Lemma 6: Suppose not. Let r1, 75, . . . be an enumera-
tion of the rational numbers. Choose L; a subset of @ so that

forallz € S,li?nf,(z) <sé +rorli1_nf;(z) >r [8]

holds for L = L, and r = r,. Having chosen the subset L;
of @, choose L1 C Ly so that Eq. [8] holds for L = Ly, and
r = riy1. This defines L, D L, D...D Ly, .. by induction.
Now by the standard diagonal procedure, choose an infinite
set L with I almost contained in L; for all ¥ & N. It then
follows that Eq. [8] holds for all rational numbers 7. Since L
is in turn almost contained in @ and @ satisfies the conclusion
of Lemma 6, 8(L) = 6(Q) = 234, Let ¢ = §/2. By the definition
of §(L), we may choose an z & § so that

lgnfxx) = lm fi(a) > 8) — «. [91]
Now let @ = lim f,(z) and b = lg_gl Sfi(z); Eq. [9] may then
L

be expressed in the form
a>26—e+4+b>0

Choose a rational number 7 so that # > bandr — b + 6 <
26 — ¢ = (3/2)é. Thus

b<r<r+é6=@C—-b+6+b<2—c+b<a.

Since we thus have a > & 4+ r and b < r, Eq. [8] is contra-
dicted.
Q.E.D.

We do not know if the Main Theorem holds for complex
Banach spaces*. However let B be a complex Banach space,
and (e,)»cy & sequence in B equivalent to the usual {’-basis
over the real scalars. If there is no subset M of N with (e,)ncar
equivalent to the usual {*-basis over the complex scalars, we
may choose finite disjoint subsets By, By, . . . of N and elements
Y, Y3, ... and 2, 2, ... in B so that lim ||y; — z,|| =

J—>®

that for all 7, ||y,|| = ||z5]] = 1 and y,and 4z, are in the linear
span of {e,: n € B,}. Now for all real scalars a and b and all
7, we have that

llaizs + by |l > [l(af + b)z,|| — ||by; — bz4|
= (a*+ 59" — |b] |ly; — 2ll.
It then follows that there is a k so that both sequences (v,

'iz);, Yr+1, i2k+1. . .) and (Zk, izk, Zg41y izk+,, .o .) are equivalent
to the usual I'-basis over the real scalars. Consequently (z,

Zp41, . . .) is equivalent to the usual I’-basis over the complex

scalars. Hence our Main Theorem implies that the result
stated in the abstract holds for complex Banach spaces as well.
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Addendum. E. Odell and I have shown that a separable Banach
space B contains a subspace isomorphic to I! provided there
exists an element in B** that is not a limit in the B* topology
of a sequence in B. Consequently, B contains an isomorph of I
if (and only if) the cardinality of B** is greater than that of the
continuum. The proof uses Proposition 4 and arguments similar
to those of Lemmas § and 6, but does not make use of Theorem 2
or Lemma 3. This result and related ones will appear elsewhere.

* Note Added in Proof. This has been resolved in the affirma-
tive by L. Dor.



